US009148476B2

a2z United States Patent (10) Patent No.: US 9,148,476 B2
Mattsson et al. 45) Date of Patent: *Sep. 29, 2015
(54) VERIFIABLE TOKENIZATION (58) Field of Classification Search
))) CPC ittt GOG6F 21/10
(71) Applicant: Protegrity Corporation, George Town, See application file for complete search history.
Grand Cayman (KY)
(56) References Cited
(72) Inventors: UM Mattsson, Cos Cob, CT (US);
Vichai Levy, Norwalk, CT (US); Jan U.S. PATENT DOCUMENTS
Boberg, Skelleftea (SE); Hans Meijer, 5,050,048 A 21960 Luh
)) uhn
Skelleftea (SE) 7,120,933 B2 10/2006 Mattsson
(73) Assignee: Protegrity Corporation, Grand Cayman (Continued)
(KY) OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this Mattsson, U.T., “Format-Controlling Encryption Using Datatype-
patent is extended or adjusted under 35 Preserving Encryption,” National Institute of Standards and Technol-
U.S.C. 154(b) by O days. ogy, Dec. 5, 2012, pp. 1-46, can be retrieved at <http://csrc.nist.gov/

groups/ST/toolkit/BCM/documents/proposedmodes/fc-em/fcem-

This patent is subject to a terminal dis-
spec.pdf>.

claimer.
(Continued)

(21) Appl. No.: 14/564,105
Primary Examiner — Teshome Hailu

(22) Filed: Dec. 9,2014 Assistant Examiner — Thanh Le

(65) Prior Publication Data (74) Attorney, Agent, or Firm — Fenwick & West LLP
US 2015/0096046 Al Apr. 2,2015 (57) ABSTRACT
Related U.S. Application Data Use rules are included within tokenized data either before or

]) o after tokenization. The use rules can be appended to the data
(63) Continuation of application No. 13/752,200, filed on before or after tokenization, can be used to modify the data

Jan. 28, 2013, now Pat. No. 8,935,802. before or after tokenization, and can be used to select or
(60) Provisional application No. 61/593,238, filed on Jan. generate token tables for use in tokenizing the data. The use
31, 2012, provisional application No. 61/593,241, rules limit how, where, and when the tokenized data can be
filed on Jan. 31, 2012. used, who can use the tokenized data, and the like. In addition,
data can be tokenized such that the tokenized data can be
(51) Int.CL identified as tokenized based on the tokenized data failing a
GO6F 21/10 (2013.01) validation test. The data is tokenized using one or more token
T04L 29/08 (2006.01) tables, and the validation test is applied to the tokenized data.
(Continued) If the tokenized data passes the validation test, the data is
modified with formatting rules or re-tokenized with addi-
(52) US.CL tional token tables until the tokenized data fails the validation
CPC HO4L 67/10 (2013.01); GO6F 21/6245 test.
(2013.01); GOGF 21/6254 (2013.01); GO6Q
50/265 (2013.01) 20 Claims, 3 Drawing Sheets
Client
1108
fon 1o

oS

Tokenization System

Interface Tokenization Tokenization
120 130 Tables
140

Self Aware Data Verifiable Data -
Token Token Use Rule Tables
150 160 170

US 9,148,476 B2
Page 2

(51) Imt.ClL
GO6F 21/62 (2013.01)
G06Q 5026 (2012.01)
(56) References Cited

U.S. PATENT DOCUMENTS

7,274,792 B2* 9/2007 Chinetal. 380/262
7,305,707 B2 12/2007 Mattsson
8,458,487 Bl1* 6/2013 Palgonetal. 713/185

2008/0005786 Al 1/2008 Dreymann

2008/0082834 Al 4/2008 Mattsson

2009/0249082 Al* 10/2009 Mattsson 713/193
2010/0077051 Al 3/2010 Daniell et al.

2011/0099104 Al 4/2011 Nybom

2011/0213807 Al 9/2011 Mattsson

2011/0307714 Al* 12/2011 Comrieetal. 713/189
2013/0047200 Al1* 2/2013 Radhakrishnan etal. 726/1
2013/0103685 Al 4/2013 Preneel et al.

OTHER PUBLICATIONS

McCallister, E., et al., Guide to Protecting the Confidentiality of
Personally.

Identifiable Information (PII), National Institute of Standards and
Technology, U.S. Department of Commerce, Jan. 2009, pp. 2-58, can
be retrieved at <http://csrc.nist.gov/puplications/PubsSPs html>.
United States Office Action, U.S. Appl. No. 13/752,200, May 23,
2014, 11 pages.

* cited by examiner

U.S. Patent Sep. 29, 2015 Sheet 1 of 3 US 9,148,476 B2

Client
110B
Client Client
110A 110C
101
Tokenization System
100
R
N~
Interface Tokenization Tokenization
120 130 Tables
140
N~
R
-~ N
Self Aware Data Verifiable Data
Token Token Use Rule Tables
150 160 170
N~

FIG. 1

U.S. Patent Sep. 29, 2015 Sheet 2 of 3 US 9,148,476 B2

Receive input data
200

Y

Modify data to include use rule
210

'

Retrieve set of token tables
220

'

Tokenize modified data using
the set of tokenization tables
230

FIG. 2

U.S. Patent Sep. 29, 2015 Sheet 3 of 3 US 9,148,476 B2

Receive input data
300

'

Retrieve set of token tables
310

'

Tokenize input data using the
set of tokenization tables
320

'

Determine if tokenized data

passes validity test B
330
No
ves Modify token according to
formatting rules
340
A 4

Output tokenized data
350

FIG. 3

US 9,148,476 B2

1
VERIFIABLE TOKENIZATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 13/752,200, filed Jan. 28, 2013, now U.S. Pat. No. 8,935,
802, which claims the benefit of Provisional Application No.
61/593,238, filed on Jan. 31, 2012, and Provisional Applica-
tion No. 61/593,241, filed on Jan. 31, 2012, the contents of
which are incorporated herein by reference.

FIELD OF ART

This application relates generally to the field of data pro-
tection, and more specifically to data tokenization.

BACKGROUND

Many challenges exist in handling sensitive data, such as
credit card numbers, social security numbers, bank account
numbers, driving license numbers, and the like. In use, a
system for processing such sensitive data transmits the sen-
sitive data between multiple authorized entities, any of which
can store the sensitive data. For example, in a retail environ-
ment, a user may swipe a credit card at a register, the register
may transmit the credit card number to alocal server, the local
server may transmit the credit card number to a bank, and so
forth. In this example, the credit card number may be stored at
the register, the local server, the bank, and at any other inter-
mittent entity implemented within such a retail environment.
In such a system, the sensitive data is vulnerable to intercep-
tion by unauthorized entities at multiple points, such as dur-
ing each transmission between authorized entities or while
stored at any authorized entity.

To prevent unauthorized access to sensitive data, steps can
be taken to protect the sensitive data. Such data protection
measures are required by many jurisdictions for various cat-
egories of sensitive data. The sensitive data can be encrypted
during transmission or storage using an encryption algorithm
and encryption key, but encryption can be broken by various
hacking methods. Data storage security measures can be
implemented while the sensitive data is stored at an autho-
rized entity, but such storage security measures generally
protect against intrusion by an unauthorized entity and don’t
protect the sensitive data after the unauthorized entity has
overridden or bypassed the storage security measures.

SUMMARY

Sensitive data is tokenized using one or more token tables
by a tokenization system (such as a mobile device, payment
terminal, or other computing device) by subsequent storage
or transmission. Data can be tokenized, for example, in
response to receiving a tokenization request.

Tokenized data may include one or more use rules that each
define one or more limitations that restrict the usage of the
tokenized data. Such tokenized data is referred to as “self
aware tokenized data” herein. The use rules may be included
in the tokenized data by appending the use rule to the sensitive
data either before or subsequent to the tokenization of the
data. Use rules may, for example, take the form of identity
rules (e.g., limit who can send an email message to an email
address represented by the tokenized data), or transaction
rules (e.g., how much money can be spent using a credit card
number represented by the tokenized data). The use rules may

15

20

30

35

40

45

50

55

2

also be used to generate or select one or more token tables for
use in tokenizing the sensitive data.

To distinguish between tokenized data and un-tokenized
data, the tokenization system may be configured to generate
tokenized data that intentionally fails a validation test. Such
tokenized data is referred to as “verifiable tokenized data”
herein. To generate a token that fails the validation test, sen-
sitive data is tokenized using one or more token tables. The
verification test is applied to the tokenized data and, if the
tokenized data passes the validation test, the tokenized data is
modified according to a set of formatting rules (e.g. modulus
addition of a predetermined number to the tokenized data)
such that the tokenized data does not pass the validation test.

BRIEF DESCRIPTION OF DRAWINGS

The disclosed embodiments have other advantages and
features which will be more readily apparent from the
detailed description, the appended claims, and the accompa-
nying figures (or drawings). A brief introduction of the figures
is below.

FIG. 1 illustrates a tokenization environment, according to
one embodiment.

FIG. 2 is a flowchart of a tokenization process for gener-
ating self aware tokenized data, according to one environ-
ment.

FIG. 3 is a flowchart of a tokenization process for gener-
ating verifiable tokenized data, according to one environ-
ment.

DETAILED DESCRIPTION

The Figures (FIGS.) and the following description relate to
preferred embodiments by way of illustration only. It should
be noted that from the following discussion, alternative
embodiments of the structures and methods disclosed herein
will be readily recognized as viable alternatives that may be
employed without departing from the principles of what is
claimed.

Reference will now be made in detail to several embodi-
ments, examples of which are illustrated in the accompanying
figures. It is noted that wherever practicable similar or like
reference numbers may be used in the figures and may indi-
cate similar or like functionality. The figures depict embodi-
ments of the disclosed system (or method) for purposes of
illustration only. One skilled in the art will readily recognize
from the following description that alternative embodiments
of the structures and methods illustrated herein may be
employed without departing from the principles described
herein.

Tokenization Overview

The transmission and storage of sensitive data, such as
credit card numbers, social security numbers, bank account
numbers, driving license numbers, etc, is oftentimes chal-
lenging. Before sensitive data can be transmitted or stored,
the sensitive data is usually encrypted or tokenized into
tokenized data to prevent an unauthorized entity from access-
ing the data.

As used herein, the tokenization of data refers to the gen-
eration of tokenized data by querying one or more token
tables mapping input values to tokens with the one or more
portions of the data, and replacing the queried portions of the
data with the resulting tokens from the token tables. Tokeni-
zation can be combined with encryption for increased secu-
rity, for example by encrypting sensitive data using a math-
ematically reversible cryptographic function (e.g., datatype-
preserving encryption or DTP), a one-way non-reversible

US 9,148,476 B2

3

cryptographic function (e.g., a hash function with strong,
secret salt), or a similar encryption before or after the tokeni-
zation of the sensitive data. Any suitable type of encryption
can be used in the tokenization of data.

As used herein, the term token refers to a string of charac-
ters mapped to an input string of characters in a token table,
used as a substitute for the string of characters in the creation
of tokenized data. A token may have the same number of
characters as the string being replaced, or can have a different
number of characters. Further, the token may have characters
of'the same type (such as numeric, symbolic, or alphanumeric
characters) as the string of characters being replaced or char-
acters of a different type.

Any type of tokenization may be used to perform the func-
tionalities described herein. One such type of tokenization is
static lookup table (“SLT”) tokenization. SLT tokenization
maps each possible input values (e.g., possible character
combinations of a string of characters) to a particular token.
An SLT includes a first column comprising permutations of
input string values, and may include every possible input
string value. The second column of an SLT includes tokens,
with each associated with an input string value of the first
column. Each token in the second column may be unique
among the tokens in the second column. Optionally, the SLT
may also include one or several additional columns with
additional tokens mapped to the input string values of the first
column.

In some embodiments, to increase the security of tokeni-
zation, sensitive data can be tokenized two or more times
using the same or additional token tables. For example, the
first 8 digits of'a 16 digit credit card number can be tokenized
with an 8 digit token table to form first tokenized data, and the
last 12 digits of the first tokenized data can be tokenized using
a 12 digit token table to form second tokenized data. In
another example, the first 4 digits of a credit card number are
tokenized using a first token table, the second 4 digits are
tokenized with a second token table, the third 4 digits are
tokenized with a third token table, and the last 4 digits are
tokenized with a fourth token table. Certain sections of the
sensitive data may also be left untokenized; thus a first subset
of the resulting tokenized data may contain portions of the
sensitive data and a second subset of the tokenized data may
contain a tokenized version of the sensitive data.

Dynamic token lookup table (“DLT”) tokenization oper-
ates similarly to SL'T tokenization, but instead of using static
tables for multiple tokenizations, a new token table entry is
generated each time sensitive data is tokenized. A seed value
can be used to generate each DLT. In some embodiments, the
sensitive data or portions of the sensitive data can be used as
a seed value to generate a DLT. DLTs can in some configu-
rations provide a higher level of security compared to SLT but
require the storage and/or transmission of a large amount of
data associated with each of the generated token tables. While
DLT tokenization can be used to tokenize data according to
the principles described herein, the remainder of the descrip-
tion will be limited to instances of SLT tokenization for the
purposes of simplicity.

Tokenization System Environment

FIG. 1 illustrates a tokenization environment, according to
one embodiment. The tokenization environment of FIG. 1
includes a tokenization system 100 and a plurality of clients,
client 110A, 110B, and 110C (“clients 1107, collectively),
communicatively coupled through a connecting network 101.
While only three clients are shown, in practice the environ-
ment can include any number of clients, and can include
additional components not illustrated herein.

30

40

45

55

4

The clients 110 are entities capable of transmitting sensi-
tive data to or receiving data from the tokenization system 100
via the connecting network 101. A client can be a device, such
as a computer, a cash register, a server, a payment terminal, a
mobile phone or device; can be a service, such as an online
payment system; or can be any other entity, such as a user of
the tokenization system, a credit card provider, a bank, a
merchant, and the like. The clients interact with the tokeni-
zation system using software such as a web browser or other
application with communication functionality. Such software
can include an interface for communicating with the tokeni-
zation system via the connecting network. For example, client
110A can be a merchant terminal capable of receiving credit
card information from a merchant customer, and client 110B
can be a bank. In this example, a customer can swipe a credit
card at the merchant terminal, the merchant terminal can
receive the credit card’s number, the tokenization system can
tokenize the credit card number, and the tokenized credit card
number can be sent to the bank.

In some embodiments, the client device may be a mobile
computing device running a mobile wallet application. As
used herein, a mobile wallet application is software that orga-
nizes payment or account information (such as credit card
information or bank account information) to allow the mobile
device to conduct transactions. The mobile device may
include a wireless communication transceiver (such as a near
field communication or NFC transceiver) to wirelessly com-
municate with a payment terminal (such as a cash register).
The mobile device running the mobile wallet application can
receive information regarding a transaction (such as an
amount of the transaction, a transaction type, and the like) and
can send payment information to complete the transaction. A
mobile wallet application that contains information about a
credit card can perform a transaction by, for example, waving
the mobile device containing the mobile wallet application
over a payment terminal receiver.

The connecting network 101 is typically the Internet, but
may be any network, including but not limited to a LAN, a
MAN, a WAN;, a mobile wired or wireless network, a private
network, a virtual private network, a direct communication
line, and the like. The connecting network can be a combina-
tion of multiple different networks. In such embodiments, the
tokenization system can be implemented at, within, or co-
located with a client. For example, the tokenization system
100 can be an application installed on the client 110A, and the
connecting network can include internal circuitry coupling
the tokenization system to other portions of the client 110A,
and can include the internet coupling the tokenization system
to the client 110B.

The tokenization system 100 includes an interface module
120, a tokenization module 130, a token tables storage mod-
ule 140, a self aware tokenization module 150, a use rule
tables storage 170, and a verifiable tokenization module 160.
Other conventional features, such as firewalls, load balancers,
authentication servers, application servers, failover servers,
site management tools, and so forth, can be included in other
embodiments, but are not shown so as to more clearly illus-
trate the features of the tokenization system. It will be appre-
ciated that the operations and processes of the tokenization
system 100 are sufficiently complex and time consuming as to
necessarily require their implementation in a digital computer
system, and cannot be performed for practical, commercial
purposes in the human mind by mental steps.

The interface module 120 provides the interface between
the tokenization system 100 and the clients 110. The interface
module 120 receives input data and a tokenization request
from a first client, and returns tokenized data responsive to the

US 9,148,476 B2

5

request to the first client or to a second client. The interface
module 120 can receive a seed value from a client for use in
tokenizing input data (for instance, for use as an initialization
vector, an encryption key, a token table identifier, and the
like). The interface module 120 can receive any additional
information associated with the tokenization of data or
tokenization requests, such as login/password/verification
information from clients, the identity of users of the tokeni-
zation system, time information associated with the tokeni-
zation request, encryption keys, and the like. The interface
module 120 can prompt a client for information in response to
a received request for tokenized data, and can include a
graphic user interface (GUI) or any other communicative
interface capable of display at or interaction with a client.

Tokenization requests are received at the tokenization sys-
tem 100 from a client device 110. Tokenization can be explic-
itly requested (for instance, a merchant may request that a
record be tokenized prior to storing the record), or can be
implicitly requested (for instance, by a ticket dispenser in
response to the swiping of a credit card by a user). Tokeniza-
tion requests include data to be tokenized (herein “input data
X for purposes of description) and can include a seed value
K and any other information required for authentication or
tokenization. The tokenization request may also include iden-
tification of a tokenization scheme. A tokenization scheme
can specify a pre-tokenization data modification for use in
tokenization, the method used to tokenize data, a number of
tokenization iterations, and the like.

The tokenization module 130 tokenizes the input data X
using a token table T. A detailed explanation of the tokeniza-
tion process can be found in U.S. patent application Ser. No.
13/595,438, filed Aug. 27, 2012, which is hereby incorpo-
rated by reference. The tokenization module 130 tokenizes
data using the tokenization method indentified in a tokeniza-
tion scheme included in a tokenization request, or by using a
default tokenization method, if no tokenization scheme is
identified in the request.

In some embodiments, one or more initialization vectors V
are used by the tokenization module 130 to modify the input
data X prior to tokenization. The modification of X based on
the initialization vectors V can include the addition of an
initialization vector V to X prior to tokenization. For example,
one or more initialization vectors V can be added to the input
data X, for instance using digit-wise modulo 10 addition.
Alternatively, the modification of X based on the initializa-
tion vectors V can include the subtraction of one or more
initialization vectors V from X, the multiplication of one or
more initialization vectors V and X, or any other moditying
operation between the initialization vectors V and X, arith-
metic or otherwise. It should also be noted that portions of
input data X can be modified based on portions of one or more
initialization vectors V. In one embodiment, for tokenization
including multiple tokenization iterations, the input data X
and each post-iteration tokenized data are modified by a dif-
ferent initialization vector V prior to the tokenization of the
nextiteration. In other embodiments not described herein, the
input data X is not modified based on initialization vectors V.
In these embodiments, post-iteration tokenized data can be
modified by initialization vectors V prior to subsequent
tokenization.

The tokenization module 130 tokenizes the input data X
and produces the tokenized dataY for transmission to a client
110 or for storage in a non-transitory computer-readable stor-
age medium at the tokenization system 100 (not shown in
FIG. 1). The tokenization module can perform any requested
type of tokenization for any requested number of tokenization
iterations. In embodiments where a tokenization request or a

25

40

45

55

60

6

requested tokenization scheme do not specify a type of
tokenization and a number of tokenization iterations, a
default tokenization type and number of iterations can be
performed. For the purposes of simplicity, the description of
the selection oftoken tables from the token table set Tused by
the tokenization module for tokenization is limited to the
random selection of token tables, though in other embodi-
ments, token tables can be selected based on a tokenization
request, a requested tokenization scheme, or a table selection
default.

The algorithm for a tokenization iteration is as follows. The
tokenization module 130, during a tokenization iteration,
selects a table, T, from the token table set T, which includes
a plurality of different token tables. In this embodiment, the
tokenization module tokenizes the input data X by querying
the selected table T, with the input data X to identify a token,
Y,,in T, associated with an input column value of X. If no
additional tokenization iterations are to be performed (for
instance, if no additional iterations are requested), the tokeni-
zation module outputs Y, as the tokenized data Y. Alterna-
tively, if additional tokenization iterations are requested, Y | is
used as an input for a next tokenization iteration. For example,
asecond table T, is selected from the token table set T, and T,
is queried using Y, to produce Y,. This process is continued
for p iterations, after which Y, is outputted as the tokenized
data’Y, where p is a requested or default number of tokeniza-
tion iterations to be performed.

The token tables used by the tokenization module 130 are
stored in the token tables storage module 140. In some
embodiments, each stored token table or set of token tables is
associated with a unique identifier. Instead of including a seed
value K, a tokenization request or requested tokenization
scheme can include identifiers for one or more token tables or
sets of token tables stored in the token tables storage module.
Self Aware Tokenization

An additional layer of security can be added to tokenized
data by including information within the tokenized data lim-
iting the use of the tokenized data. Such information is
referred to as “use data” or “use rules,” and as noted above,
tokenized data including use data is referred to as “‘self aware
tokenized data.” Use data can limit the use of a tokenized data
to any combination of user, group, application, system, time
period, geographic region, enterprise division, transaction
type, transaction quantity, transaction amount. For example, a
use rule may limit the use of a tokenized email address to send
emails to a particular recipient or recipient list, to a particular
date or time, to emails sent to a fewer than a threshold number
of individuals, to emails sent from a particular geographic
region, and the like. Use data can also limit the use of token-
ized financial data (e.g., a credit card or account number) to
specific types of transactions, such as transactions below a
threshold amount, transactions with particular merchants,
transactions for particular products or services, transactions
occurring within a particular date or time range, transactions
within a particular geographic region, transactions from spe-
cific mobile wallet accounts or computing platforms, or any
other transaction characteristics.

To construct self aware tokenized data, the self aware
tokenization module 150 adds data representing one or more
use rules to the tokenized data. Use rules can be chosen from
the use rule storage 170, which stores a plurality of use rules.
The use rule storage 170 may list all available use rules to a
user for selection in tokenizing data, and may store use rules
created by a user when tokenizing data. Use rules can also be
created by a user of the tokenization system 100, which can be
stored in the use rule storage 170 for subsequent use. In some
embodiments the use rule can be represented by a rule iden-

US 9,148,476 B2

7

tifier. For example, a 1-digit use rule maps a 1-digit identifier
to a corresponding use rule. Use rules may also be identified
by aRule ID (e.g., ID “001” identifies rule No. 1), or a string
(e.g., string “Token Rule 1” identifies rule NO. 1). In one
embodiment, use rule storage 170 may contain a table that
maps the identifier to the corresponding use rule.

In one embodiment, a use rule can be used as a tokenization
seed value. For a use rule that limits the use of a recipient
email address to a particular sender email address, the recipi-
ent email address can be tokenized using the sender email
address as a tokenization seed value (for instance, identifying
or generating one or more token tables for use in tokeniza-
tion), preventing the use of the tokenized recipient email
address by unauthorized entities. Such an example use rule
can be used in circumstances where the recipient first sends an
email to the sender, but disguises the recipient’s email address
by tokenizing the address using the sender address as a seed
value. If the sender subsequently sends an email message to
the tokenized recipient email address, an email server asso-
ciated with the recipient email address tries to de-tokenize the
recipient email address using the sender email address as a
seed value (for instance, identifying or generating the one or
more token tables used in tokenization). If the email server is
unable to de-tokenize the token recipient email address, the
email message is determined to originate from an unautho-
rized sender email address, and the email message is rejected.
In one embodiment, such email messages are sent to a spam
messages folder or to a junk messages folder, and the unau-
thorized sender may be identified as a known spammer by the
email server.

In other embodiments, the recipient’s email server includes
a mapping of tokenized email addresses to the non-tokenized
email addresses. When an email message with a tokenized
recipient address is received, the email server can query the
mapping to retrieve the non-tokenized recipient email
address. In such embodiments, the email server can attempt to
tokenize the retrieved non-tokenized recipient email address
using the sender’s email address, and if the resulting token-
ized recipient email address does not match the received
tokenized email address, the sender email address is deter-
mined to be unauthorized to send email messages to the
recipient email address and the email message is rejected.

In some embodiments, use rules may be appended to sen-
sitive data before or after tokenization. For example, a use
rule indicating that a credit card or account number can only
be used for transactions below a certain amount (e.g., $50)
can be appended to the credit card number, and the resulting
number is tokenized prior to transmission to a merchant.
Alternatively, the credit card number can be tokenized, and
the use rule can be appended to the tokenized credit card
number prior to transmission. In one embodiment, the use
rule itselfis not tokenized. This way, the system receiving the
tokenized data does not need to de-tokenize the tokenized
data to access the use rule. Such embodiments beneficially
allow merchants and other entities to reject transactions with-
out detokenizing the credit card number if the transaction
does not satisfy the use rule (e.g., the transaction is a purchase
over $50, and the use rule restricts transactions to under $50).
In another embodiment, both the sensitive data and the use
rules are tokenized to prevent an un-authorized user from
obtaining the tokenized data and replacing the portion con-
taining the use rules with different use rules. In such embodi-
ments, the portion of the tokenized data containing the use
rules can be de-tokenized without the need of de-tokenizing
the entire tokenized data.

In some embodiments, use rules can be included within
tokenized data through various types of operations performed

10

15

20

25

30

35

40

45

50

55

60

65

8

on the sensitive data before or after tokenization. For
example, for a 1-digit use rule, a modulus addition can be
performed on one of the digits of a tokenized credit card
number with the 1-digit use rule. The use rule may then be
retrieved from the tokenized data by determining the number
that needs to be subtracted from the modified digit in order for
the tokenized data to pass a validation check (such as a check-
sum). Upon receiving the tokenized data, a validation check
can be performed, and if the tokenized data fails to validation
check, a number can be identified that, when subtracted from
apre-determined digit of the tokenized data, allows the token-
ized data to pass the validation check. In this example, the
identified number is the use rule for the tokenized data.

When using a mobile wallet application associated with a
credit card number running on a mobile computing device
(e.g., a smartphone), one or more use rules can be added to the
tokenized credit card number to limit the usage of the token-
ized credit card number in case the token is intercepted by an
unauthorized party during the wireless transmission of the
tokenized credit card number (using, for example, a near field
communication transceiver). The mobile wallet application
can apply a use rule that limits the transaction to the geo-
graphical location the user is currently in (e.g., determined
using the mobile device’s GPS receiver). The mobile wallet
application can further apply a use rule that limits the period
of time in which the token can be used, and a use rule to limit
the amount and/or the type of the transaction (e.g., as speci-
fied by the user of the mobile wallet, and/or as specified by the
payment terminal).

FIG. 2 is a flowchart illustrating the process of generating
self aware tokenized data, according to one embodiment.
Input data is received 200. The input data can be received in
conjunction with one or more use rules appended to the data
as variously described above. The received use rules are used
to modify 210 the input data. In some embodiments, the
modification of the input data includes appending a set of
characters representing the use rule to the input data. In other
embodiments, the modification of the input data includes
performing operations, such as modulo addition, on the input
data with data representing the use rule.

A set of token tables is retrieved 220. In some embodi-
ments, the use rule is used to determine which token tables are
retrieved, while in other embodiments, the token tables are
generated based on the use rule (for instance, using the use
rule as a seed to generate a set of token tables). The modified
datais tokenized 230 using the retrieved set of token tables. In
alternative embodiments, the input data is tokenized prior to
modifying the data to include the use rule (for instance, the
use rule can be appended to the tokenized data, and can be
subsequently tokenized itself). In some embodiments, the use
rule is embedded within the token table used to tokenize the
input data and thus, the input data does not need to be modi-
fied to include the use rule prior to tokenization.

Verifiable Tokenization

In various financial systems, transaction data can be for-
matted such that the validity of the transaction data can be
determined prior to the use of the transaction data. For
example, the last digit of a credit card number corresponds to
a Luhn number, which is generated based on the other digits
of'the credit card number. A validation test can be performed
on such transaction data in order to verity the validity of the
transaction data. For example, a Luhn test can be performed
on the first 15 digits of a credit card number and compared to
the last digit of the credit card number—if the two numbers
match, then the received credit card number passes the Luhn
validation test and is determined to be valid. It should be
noted that while the remainder of the description herein is

US 9,148,476 B2

9

limited to embodiments in which credit card numbers are
tokenized and the Luhn validation test is used to verify the
validity of the tokenized credit card numbers, any data can be
tokenized (such as bank account numbers, social security
numbers, driver’s license numbers, and the like) and any
suitable data validation test may be used according to the
principles described herein.

In order to differentiate tokenized data from untokenized
data, the verifiable tokenization module 160 can convert data
into tokenized data that fails a validation test. For example, a
credit card number can be iteratively re-tokenized until the
resulting tokenized data fails the Luhn validation test. The
credit card number is tokenized using a first token table. If the
resulting tokenized data passes the Luhn validation test, the
credit card number is tokenized a second time using a second
token table. This process can be repeated for any number of
tokenization iterations until tokenization using a token table
results in tokenized data that fails the validation test.

In one embodiment, instead of selecting a different token
table for each tokenization iteration, the verifiable tokeniza-
tion module generates a new token table, such as a DLT.
Alternatively, instead of selecting or generating a new token
table if the tokenized data fails the validation test, the token-
ized data can instead be modified using a formatting rule so
that the modified tokenized data fails the validation test.
Tokenized data that fails a validation test is referred to herein
as “verifiable tokenized data”, as it can be verified that the
tokenized data does not represent data that otherwise can pass
the validation test.

Formatting rules specify how tokenized data can be modi-
fied to fail a validation test. For example, a formatting rule
may specify a modulus addition operation of a check sum to
the fifth digit of a credit card number. In some embodiments,
the verifiable tokenization module 160 includes a sequence of
formatting rules that can be used to generate verifiable token-
ized data. The verifiable tokenization module 160 may apply
one or more of the formatting rules, for instance sequentially,
until the generated tokenized data fails the validation test.

Upon determining that the tokenized data fails a validation
test, the verifiable tokenization module 160 can transmit the
verifiable tokenized data to a receiving system (such as a
payment network or bank server) that has access to the token
tables and formatting rules used by the verifiable tokenization
module to tokenize the data. After the receiving system
receives the verifiable tokenized data, the original data can be
recovered using the token tables and formatting rules used to
tokenize the original data. For example, if a formatting rule is
used that modifies tokenized credit card data by adding the
Luhn number of the credit card to the fifth digit of the token-
ized credit card data to obtain verifiable tokenized credit card
data, the receiving system can subtract the Luhn number from
the fifth digit of the verifiable tokenized credit card data to
obtain the tokenized credit card data. The receiving system
can then detokenize the tokenized credit card data to obtain
the original credit card data using the token tables used by the
verifiable tokenization module to tokenize the credit card
data.

Upon receiving verifiable tokenized data, the receiving
system performs a validation check (e.g., Luhn check) to
determine that the received data is tokenized. If the received
data fails the validation check, the receiving system deter-
mines that the received data is tokenized, and the receiving
system detokenizes the tokenized data. In some embodiments
the receiving system subsequently performs the validation
check on the detokenized data to determine its validity. If the
detokenized data fails the validation check, the receiving
system can determine that a formatting rule was applied to the

30

40

45

55

10

tokenized data, and the receiving system can reverse the for-
matting operation performed by the formatting rule on the
tokenized data. The resulting tokenized data is then detoken-
ized, and the validity of the detokenized data is verified using
the validation test. In one embodiment, the receiving system
performs a number of reverse formatting operations on the
tokenized data until the detokenized data passes the valida-
tion test.

FIG. 3 is a flowchart illustrating the process of generating
verifiable tokenized data, according to one embodiment.
Input data, such as a credit card number, is received 300. The
received input data is capable of passing a validation test,
such as the Luhn test. A set of token tables is retrieved 310 and
the input data is tokenized 320 using the retrieved set of token
tables. The validity of the tokenized data is determined 330
based on a validation test. If the tokenized data passes the
validation test, the token is modified 340 according to one or
more formatting rules until the resulting tokenized data fails
the validation test. Alternatively, the input data can be re-
tokenized using one or more different token tables (for
instance by generating a new token table, or retrieving a
previously-generated different token table). This process can
be repeated until the resulting tokenized data fails the valida-
tion test, after which the tokenized data is outputted 350, for
instance to a receiving system with access to the token tables
and formatting rules used to generate the tokenized data.
Additional Configuration Considerations

The present invention has been described in particular
detail with respect to one possible embodiment. Those of skill
in the art will appreciate that the invention may be practiced in
other embodiments. First, the particular naming of the com-
ponents and variables, capitalization of terms, the attributes,
data structures, or any other programming or structural aspect
is not mandatory or significant, and the mechanisms that
implement the invention or its features may have different
names, formats, or protocols. Also, the particular division of
functionality between the various system components
described herein is merely exemplary, and not mandatory;
functions performed by a single system component may
instead be performed by multiple components, and functions
performed by multiple components may instead performed
by a single component.

It should be noted that various functionalities described
herein may be combined in ways not explicitly described. For
instance, data can be tokenized to include one or more use
rules such that the resulting tokenized data fails a validation
test and is verifiable. Thus, while self aware tokenization and
verifiable tokenization are described separately, aspects of
each may be performed in concert, and the resulting token-
ized data can be both self aware tokenized data and verifiable
tokenized data.

Some portions of above description present the features of
the present invention in terms of algorithms and symbolic
representations of operations on information. These algorith-
mic descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
These operations, while described functionally or logically,
are understood to be implemented by computer programs.
Furthermore, ithas also proven convenient at times, to refer to
these arrangements of operations as modules or by functional
names, without loss of generality.

Unless specifically stated otherwise as apparent from the
above discussion, it is appreciated that throughout the
description, discussions utilizing terms such as “determine”
refer to the action and processes of a computer system, or
similar electronic computing device, that manipulates and

US 9,148,476 B2

11

transforms data represented as physical (electronic) quanti-
ties within the computer system memories or registers or
other such information storage, transmission or display
devices.

Certain aspects of the present invention include process
steps and instructions described herein in the form of an
algorithm. It should be noted that the process steps and
instructions of the present invention could be embodied in
software, firmware or hardware, and when embodied in soft-
ware, could be downloaded to reside on and be operated from
different platforms used by real time network operating sys-
tems.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may com-
prise a general-purpose computer selectively activated or
reconfigured by a computer program stored on a non-transi-
tory computer readable medium that can be accessed by the
computer. Such a computer program may be stored in a com-
puter readable storage medium, such as, but is not limited to,
any type of disk including floppy disks, optical disks, CD-
ROMs, magnetic-optical disks, read-only memories (ROMs),
random access memories (RAMs), EPROMs, EEPROMs,
magnetic or optical cards, application specific integrated cir-
cuits (ASICs), or any type of computer-readable storage
medium suitable for storing electronic instructions, and each
coupled to a computer system bus. Furthermore, the comput-
ers referred to in the specification may include a single pro-
cessor or may be architectures employing multiple processor
designs for increased computing capability.

The algorithms and operations presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general-purpose systems may also be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure for
a variety of these systems will be apparent to those of skill in
the art, along with equivalent variations. In addition, the
present invention is not described with reference to any par-
ticular programming language. It is appreciated that a variety
of programming languages may be used to implement the
teachings of the present invention as described herein, and
any references to specific languages are provided for inven-
tion of enablement and best mode of the present invention.

The present invention is well suited to a wide variety of
computer network systems over numerous topologies. Within
this field, the configuration and management of large net-
works comprise storage devices and computers that are com-
municatively coupled to dissimilar computers and storage
devices over a network, such as the Internet.

Finally, it should be noted that the language used in the
specification has been principally selected for readability and
instructional purposes, and may not have been selected to
delineate or circumscribe the inventive subject matter.
Accordingly, the disclosure of the present invention is
intended to be illustrative, but not limiting, of the scope of the
invention, which is set forth in the following claims.

What is claimed is:
1. A computer-implemented method for tokenizing data
comprising:

receiving, by a computing device, data to be tokenized, the
received data configured to pass a validation test that
determines data validity based on a result of a math-
ematical operation performed on all or part of the
received data;

25

30

40

45

55

60

12

accessing a token table for use in tokenizing the received
data, the token table mapping each of a plurality of input
values to a different token value;

querying the accessed token table with a portion of the
received data to identify a token value mapped to the
value of the portion of the received data;

generating tokenized data by replacing the portion of the
received data with the identified token value;

determining if the tokenized data passes the validation test;
and

responsive to the tokenized data passing the validation test,
modifying the tokenized data such that the modified
tokenized data does not pass the validation test.

2. The method of claim 1, wherein the validation test com-

prises the performance of a checksum operation on data.
3. The method of claim 2, wherein modifying the tokenized
data comprises performing modulus addition on the token-
ized data using a checksum value.
4. The method of claim 3, wherein the modulus addition
comprises the modulus addition of the checksum value to a
predetermined digit or a set of predetermined digits of the
tokenized data.
5. The method of claim 1, wherein a portion of the token-
ized data comprises a same value as a corresponding portion
of'the received data, and wherein the corresponding portion of
the received data is used as an initialization vector in gener-
ating the tokenized data.
6. The method of claim 1, wherein the received data com-
prises a credit card number, and wherein the validation test
comprises a Luhn validation test.
7. The method of claim 1, wherein modifying the tokenized
data comprises:
accessing a second token table; and
generating second tokenized data by replacing the portion
of the received data with a second token value mapped to
the value of the portion of the received data, the modified
tokenized data comprising the modified tokenized data.
8. A system for tokenizing data comprising:
a non-transitory computer-readable storage medium com-
prising executable computer instructions configured to:
receive data to be tokenized, the received data config-
ured to pass a validation test that determines data
validity based on a result of a mathematical operation
performed on all or part of the received data;

access a token table for use in tokenizing the received
data, the token table mapping each of a plurality of
input values to a different token value;

query the accessed token table with a portion of the
received data to identify a token value mapped to the
value of the portion of the received data;

generate tokenized data by replacing the portion of the
received data with the identified token value;

determine if the tokenized data passes the validation test;
and

responsive to the tokenized data passing the validation
test, modify the tokenized data such that the modified
tokenized data does not pass the validation test; and

a processor configured to execute computer instructions.

9. The system of claim 8, wherein the validation test com-
prises the performance of a checksum operation on data.

10. The system of claim 9, wherein modifying the token-
ized data comprises performing modulus addition on the
tokenized data using a checksum value.

11. The system of claim 10, wherein the modulus addition
comprises the modulus addition of the checksum value to a
predetermined digit or a set of predetermined digits of the
tokenized data.

US 9,148,476 B2

13

12. The system of claim 8, wherein a portion of the token-
ized data comprises a same value as a corresponding portion
of'the received data, and wherein the corresponding portion of
the received data is used as an initialization vector in gener-
ating the tokenized data.

13. The system of claim 8, wherein the received data com-
prises a credit card number, and wherein the validation test
comprises a Luhn validation test.

14. The system of claim 8, wherein modifying the token-
ized data comprises:

accessing a second token table; and

generating second tokenized data by replacing the portion

of'the received data with a second token value mapped to
the value of the portion of the received data, the modified
tokenized data comprising the modified tokenized data.

15. A non-transitory computer-readable storage medium
storing executable computer instructions for tokenizing data,
the instructions, when executed, configured to perform steps
comprising:

receiving data to be tokenized, the received data configured

to pass a validation test that determines data validity
based on a result of a mathematical operation performed
on all or part of the received data;

accessing a token table for use in tokenizing the received

data, the token table mapping each of a plurality of input
values to a different token value;

querying the accessed token table with a portion of the

received data to identify a token value mapped to the
value of the portion of the received data;

generating tokenized data by replacing the portion of the

received data with the identified token value;

10

20

25

14

determining if the tokenized data passes the validation test;

and

responsive to the tokenized data passing the validation test,

modifying the tokenized data such that the modified
tokenized data does not pass the validation test.

16. The computer-readable storage medium of claim 15,
wherein the validation test comprises the performance of a
checksum operation on data.

17. The computer-readable storage medium of claim 16,
wherein modifying the tokenized data comprises performing
modulus addition on the tokenized data using a checksum
value.

18. The computer-readable storage medium of claim 17,
wherein the modulus addition comprises the modulus addi-
tion of the checksum value to a predetermined digit or a set of
predetermined digits of the tokenized data.

19. The computer-readable storage medium of claim 15,
wherein a portion of the tokenized data comprises a same
value as a corresponding portion of the received data, and
wherein the corresponding portion of the received data is used
as an initialization vector in generating the tokenized data.

20. The computer-readable storage medium of claim 15,
wherein modifying the tokenized data comprises:

accessing a second token table; and

generating second tokenized data by replacing the portion
of the received data with a second token value mapped to
the value of the portion of the received data, the modified
tokenized data comprising the modified tokenized data.

#* #* #* #* #*

